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A procedure for the construction and the classification of monoatomic

multilattices in arbitrary dimension is developed. The algorithm allows one to

determine the location of the points of all monoatomic multilattices with a given

symmetry, or to determine whether two assigned multilattices are arithmetically

equivalent. This approach is based on ideas from integral matrix theory, in

particular the reduction to the Smith normal form, and can be coded to provide

a classification software package.

1. Introduction

A monoatomic ðN þ 1Þ-lattice is a set of points in Rn that is

the union of N þ 1 identical Bravais lattices, and can be

described by a reference (or skeletal) Bravais lattice and N

shift vectors ðp�Þ�¼1;...;N, which represent the translations of

the additional lattices with respect to the reference one.

Equivalently, a monoatomic ðN þ 1Þ-lattice can be described

as a Bravais lattice with N additional identical points per unit

cell (cf. e.g. Pitteri & Zanzotto, 2003).

The symmetry of a multilattice is determined by those

point-group operations of the skeletal lattice that leave the

multilattice invariant, i.e. that interchange the additional

points modulo lattice translations (Pitteri & Zanzotto, 1998,

2000; Fadda & Zanzotto, 2000, 2001a). A symmetry operation

of an ðN þ 1Þ-lattice can be identified to a triple R, ðA�
�Þ, ðt�Þ

such that

Rp� ¼
PN
�¼1

A�
�p� þ t�; � ¼ 1; . . . ;N; ð1Þ

with R a point-group symmetry of the skeletal lattice, ðA�
�Þ an

integral matrix that corresponds to the permutation action of

R on the points of the multilattice, and ðt�Þ are lattice vectors.

Working in components in a skeletal lattice basis, we can

equivalently rewrite equation (1) as

MP ¼ PAþ T; ð2Þ

with M ¼ ðMi
jÞ a unimodular integral matrix in the lattice

group of the skeletal lattice, A ¼ ðA�
�Þ, T ¼ ðTi

�Þ a matrix of

integers representing a set of lattice translations, and P ¼ ðPi
�Þ

the matrix whose columns are the components of the shift

vectors.

To each triple ðM;A;TÞ an ðN þ nÞ � ðN þ nÞmatrix of the

form

M T

0 A

� �
ð3Þ

can be associated, and it turns out that the set of all triples that

satisfy equation (2) for a given set of shift vectors is a group

under matrix multiplication, which is isomorphic to the space

group of the multilattice, and which we refer to as the lattice

group of the multilattice (Pitteri & Zanzotto, 1998).

We denote by �n;N the group of all matrices of the form (3)

for arbitrary unimodular integral M, a linear representation of

a permutation A, and an integral matrix T: two ðN þ 1Þ-

lattices are arithmetically equivalent if their lattice groups are

conjugated in �n;N . This notion of equivalence generalizes to

multilattices the usual arithmetic classification of simple

lattices in Bravais types (Schwarzenberger, 1972; Miller, 1972;

Engel, 1986; Pitteri & Zanzotto, 1998).

We refer to (1) as the master equation of the multilattice. It

can be used either to compute the shift vectors ðp�Þ, given the

lattice group, or to compute the lattice group given the

skeletal lattice and the shift vectors.

In this work we describe a procedure to solve the master

equation for any given skeletal lattice. The procedure is based

on ideas from integral matrix diagonalization (Smith, 1861;

Newman, 1972; Gohberg et al., 1982; Havas & Majewski, 1997;

Dumas et al., 2001; Jäger, 2005) and automatically yields a

single representative for each arithmetical equivalence class of

multilattices. The idea is as follows: rewriting equation (2) as a

linear system of the form

LePP ¼ 0 modZ;

with L an integral matrix andePP a suitable unknown vector, it is

a well known result that L can be written in a canonical form

D whose only nonzero entries are integers, are along the

diagonal and are arranged in a sequence such that each

element divides the next one. Using the canonical form of L,

the system (2) decouples into a finite number of elementary

equations with integral coefficients Di
i 2 Z and unknowns Xi:

Di
iXi ¼ 0 modZ; i ¼ 1; . . . ; r;

whose solutions have the form
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k1

D1
1

;
k2

D2
2

; . . . ;
kr

Dr
r

; trþ1; trþ2; . . . ; tnN

� �
;

where ki 2 f0; 1; 2; . . . ;Di
i � 1g are integers and tj are real

numbers in ½0; 1Þ [cf. (14)]. Hence, the transformation to Smith

canonical form allows all solutions of equation (2) to be

constructed at the sole cost of computing the canonical form

itself.

Further, as a side result, this approach yields a simple

criterion for the arithmetic equivalence of two given mono-

atomic multilattices whose underlying skeletal lattices are

arithmetically equivalent.

In conclusion, the procedure described in this paper

provides a basis for an algorithm for the classification of

multilattices with an arbitrary number of points, but also yields

a simple method to determine regular sets of points in arbi-

trary dimensions. This sort of calculation is useful for instance

when high-dimensional crystallography is used, via a projec-

tion approach, to study quasicrystals or sets of points with

noncrystallographic symmetry (Indelicato, Cermelli et al.,

2012).

Also, arithmetic equivalence, which yields a finer classifi-

cation than the classical classification according to affine

equivalence classes of space groups, is an essential tool in

characterizing and studying reconstructive phase transitions

based on the notion of Bain strain, in which there is no

symmetry reduction between the parent and product phases

(for instance simple cubic and body- or face-centered cubic),

but their lattice groups are not arithmetically equivalent

(Indelicato, Cermelli et al., 2012; Indelicato, Keef et al., 2012).

In order to improve readability, we have collected all the

proofs in Appendix A, and we have devoted the last section

to a detailed discussion of two specific examples in three

dimensions: the derivation of all inequivalent hexagonal

2-lattices (Fadda & Zanzotto, 2001b) and all inequivalent

cubic 3-lattices (Hosoya, 1987). Such results could also be

obtained using the Wyckoff positions of the relevant space

groups, which can, in turn, be determined in any dimension

(Fuksa & Engel, 1994; Eick & Souvignier, 2006), but our

approach has the advantage of not requiring the computation

of high-dimensional space groups, and taking into account

arithmetical equivalence and site symmetry by design.

2. Multilattices and the master equation

2.1. Multilattices

OðnÞ is the orthogonal group of Rn, GLðn;ZÞ is the group

of integral n� n unimodular matrices, Mðn� N;RÞ and

Mðn� N;ZÞ are the linear space and Z-module of n� N real

and integral matrices, respectively.

A simple (Bravais) lattice with basis feigi¼1;...;n � R
n and

origin Q0 2 R
n is the set of points in Rn defined by

L ¼ LðQ0; feigi¼1;...;nÞ :¼ Q0 þ
Pn
i¼1

miei 2 R
n : mi 2 Z

� �
:

The point group P of L is the group of orthogonal transfor-

mations that leave the lattice invariant:

P ¼ R 2 OðnÞ : 9M ¼ ðMj
iÞ 2 GLðn;ZÞ : Rei ¼

Pn
j¼1

M
j
iej

( )
:

ð4Þ

The lattice group G of L is the group of integral unimodular

matrices M defined by (4). It follows from this definition that

the lattice group is the matrix representation of the point

group in the lattice basis.

Two lattices L and L0 are arithmetically equivalent if the

associated lattice groups G and G0 are conjugated in GLðn;ZÞ,
i.e. there exists H 2 GLðn;ZÞ such that

G ¼ H�1
G
0H:

Consider now a simple lattice LðQ0; feigi¼1;...;nÞ and N points

Q1; . . . ;QN not belonging to L and not pairwise equivalent

modulo L.

An ðN þ 1Þ-lattice with basis feigi¼1;...;n is the union of N þ 1

simple lattices LðQ�; feigi¼1;...;nÞ:

LNþ1 ¼
[N
�¼0

Q� þ
Pn
i¼1

miei : mi 2 Z

� �
: ð5Þ

The position of the points Q1; . . . ;QN with respect to the

origin of the lattice L, called the skeletal lattice, is given by the

shift vectors

p� ¼ Q� �Q0; � ¼ 0; . . . ;N:

Notice that p0 ¼ 0.

The description (5) is one of many possible for a given

ðN þ 1Þ-lattice LNþ1: in fact, in addition to changing the lattice

basis, any relabeling of the points ðQ0; . . . ;QNÞ of the form

ðQ�ð0Þ; . . . ;Q�ðNÞÞ, with � a permutation of f0; . . . ;Ng, yields

an equivalent description of the same point set. The shift

vectors measured with respect to the new reference lattice

LðQ�ð0Þ; feigi¼1;...;nÞ have the form

p̂p� ¼ Q�ð�Þ �Q�ð0Þ;

and are related to the original shift vectors by

p̂p� ¼ Q�ð�Þ �Q0 � ðQ�ð0Þ �Q0Þ ¼ p�ð�Þ � p�ð0Þ:

2.2. Essential and non-essential description of a multilattice

The lattice vectors

T ¼
Pn
i¼1

miei : mi 2 Z

� �
define a translation group that leaves the multilattice invar-

iant, but this is not necessarily the maximal group of transla-

tional symmetries of (5). Consider a multilattice LNþ1 as

defined in (5), with lattice vectors T : we say that the

description (5) is essential if all translational symmetries of

LNþ1 belong to T , i.e. if

t 2 T , LNþ1 þ t ¼ LNþ1:
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When this is not the case, the set (5) is an ðN0 þ 1Þ-lattice, with

N0<N, and (5) is called a non-essential description of the

ðN0 þ 1Þ-lattice.

A simple criterion to establish whether a description of a

multilattice is non-essential is established by Parry (2004), who

proved the following result:

Proposition 1. Assume that the representation (5) is non-

essential. Then there exist s 2 Rn and a permutation � of the

set of N þ 1 integers f0; . . . ;Ng such that

p�ð�Þ � p� ¼ s mod T ; � ¼ 0; . . . ;N: ð6Þ

When (6) holds, � decomposes into cycles of equal length, q

say, where q � 2 and qs ¼ 0 mod T .

Conversely, when (6) holds for some permutation �, the

representation (5) is non-essential.

This criterion implies that, for instance, a 2-lattice with shift

p is a simple lattice if and only if the shift is half a lattice vector

of the skeletal lattice, as in the case of body-centered lattices.

2.3. The lattice group of a multilattice

Loosely speaking, the symmetry of a multilattice is

described by those point-group operations of the skeletal

lattice that interchange the additional points modulo lattice

translations. In order to make this notion precise, we need to

characterize how to express permutations of the points of a

multilattice in terms of the shift vectors.

The symmetric group SNþ1, acting as a group of permuta-

tions on the ðN þ 1Þ points Q0; . . . ;QN, also acts linearly on

the Z-module generated by the shift vectors fp1; . . . ; pNg as

follows:

p� 7! p�ð�Þ � p�ð0Þ; � ¼ 1; . . . ;N; � 2 SNþ1:

We denote by SNþ1 the group of matrices corresponding to

this action,

SNþ1 ¼

n
ðA�

�Þ 2 GLðN;ZÞ : 9� 2 SNþ1 such thatPN
�¼1

A�
�p� ¼ p�ð�Þ � p�ð0Þ

o
;

which is isomorphic to the symmetric group SNþ1 [cf. pp. 309–

310 of Pitteri & Zanzotto (2003), and p. 366 of Pitteri &

Zanzotto (1998)]. In general, given a finite group G, we refer to

a group morphism G ! SNþ1 as a permutation representation

(permrep) of G, and to the associated map G ! SNþ1 as a

linear permutation representation.

The symmetry of a multilattice LNþ1 is described by the set

of triples

ðR; ðA�
�Þ; ðt�ÞÞ;

with R 2 P a point-group symmetry of the skeletal lattice,

ðA�
�Þ 2 SNþ1 and t� 2 T for � ¼ 1; . . . ;N, such that the action

of the point-group operation R on the shift vectors corre-

sponds to a permutation of the points fQ0; . . . ;QNg modulo

translations of the lattice or, equivalently, to a change of

descriptors of the multilattice. In short, ðR; ðA�
�Þ; ðt�ÞÞ is a

symmetry operation of LNþ1,

Rp� ¼
PN
�¼1

A�
�p� þ t�; � ¼ 1; . . . ;N: ð7Þ

Granted (4), and writing p� ¼
Pn

i¼1 Pi
�ei and t� ¼

Pn
i¼1 Ti

�ei,

with ðPi
�Þ 2 Mðn� N;RÞ, ðTi

�Þ 2 Mðn� N;ZÞ, we may

rewrite equation (7) in the formPn
j¼1

Mi
jP

j
� ¼

PN
�¼1

Pi
�A�

� þ Ti
�; � ¼ 1; . . . ;N; ð8Þ

i.e. with M ¼ ðMi
jÞ, P ¼ ðPi

�Þ, A ¼ ðA�
�Þ, T ¼ ðTi

�Þ,

MP ¼ PAþ T: ð9Þ

We refer to equations (8) or (9) as the master equation. The

matrices M and A satisfying equation (9) form the symmetry

group of the multilattice.

Proposition 2. Given an ðN þ 1Þ-lattice with shifts P 2

Mðn� N;RÞ, let H be the subset of GLðn;ZÞ of matrices M

such that there exist A 2 SNþ1 and T 2 Mðn� N;ZÞ that

satisfy the master equation (9). Then

(i) H is a subgroup of the lattice group G of the skeletal

lattice;

(ii) the map H! SNþ1 mapping M to A in equation (9)

defines a permutation representation of H on the set

fQ0; . . . ;QNg, such that Q�ð�Þ �Q�ð0Þ ¼
PN

�¼1 A�
�p�.

We denote by �n;N the set of matrices in GLðnþ N;ZÞ
defined by

�n;N ¼

n
H E

O B

� �
2 GLðnþ N;ZÞ : H 2 GLðn;ZÞ;

E 2 Mðn� N;ZÞ; B 2 SNþ1

o
:

Proposition 2 motivates the definition of lattice group of an

ðN þ 1Þ-lattice with shift vectors P as the group of matrices

K � �n;N such that

K ¼

n
M T

0 A

� �
2 �n;N : M 2 H; MP ¼ PAþ T

o
: ð10Þ

The group K is isomorphic to the space group of the multi-

lattice, as discussed in Pitteri & Zanzotto (1998).

Two ðN þ 1Þ-lattices with lattice groups K and K0 are

arithmetically equivalent ifK andK0 are conjugated in �n;N , i.e.

if there exists a matrix Q 2 �n;N such that

K
0
¼ Q�1

KQ:

Further, since H and K are finite, they admit a finite set of

generators ðMð1Þ; . . . ;MðKÞÞ and ðGð1Þ; . . . ;GðKÞÞ, with

GðkÞ ¼
MðkÞ TðkÞ

0 AðkÞ

� �
;

Proposition 2 allows one to conclude that if the master

equation holds for each generator, then it holds for all

elements of the group K. Hence equation (9), which holds for

every element of K, can be replaced by

MðkÞP� PAðkÞ ¼ TðkÞ; k ¼ 1; . . . ;K: ð11Þ
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2.4. An example

We discuss here a two-dimensional example to show that

the master equation (7) embodies the symmetries of a multi-

lattice. Consider the monoatomic planar 3-lattice with space

group p4mm (Fig. 1) and square skeletal lattice: one descrip-

tion of this point set is obtained by letting Q0 ¼ ð0; 0Þ,

Q1 ¼ ð1=2; 0Þ, Q2 ¼ ð0; 1=2Þ, and choosing the shift vectors as

p1 ¼ Q1 �Q0; p2 ¼ Q2 �Q0:

A different description arises by choosing Q̂Q0 ¼ ð1=2; 0Þ,

Q̂Q1 ¼ ð0; 0Þ, Q̂Q2 ¼ ð0; 1=2Þ, with shift vectors

p̂p1 ¼ Q̂Q1 � Q̂Q0 ¼ �p�ð0Þ; p̂p2 ¼ Q̂Q2 � Q̂Q0 ¼ p�ð2Þ � p�ð0Þ;

with � the transposition of 0 and 1 that fixes 2.

The point group of the planar square lattice is 4mm, and we

choose as generators of the lattice group the integral matrices

Mð1Þ ¼
0 �1

1 0

� �
; Mð2Þ ¼

1 0

0 �1

� �
:

The generator Mð1Þ fixes Q0 and permutes Q1 and Q2 modulo

the lattice, while the action of Mð2Þ on the points Q0, Q1, Q2 is

lattice invariant:

Mð1Þp1 ¼ p2; Mð1Þp2 ¼ �p1 ¼ p1 � e1;

and

Mð2Þp1 ¼ p1; Mð2Þp2 ¼ �p2 ¼ p2 � e2;

where e1 ¼ ð1; 0Þ and e2 ¼ ð0; 1Þ are the basis vectors of the

square lattice. Hence, the action of the point group of the

skeletal lattice on the shifts can be written in the form (7), in

terms of the matrices

Að1Þ ¼
0 1

1 0

� �
; Að2Þ ¼

1 0

0 1

� �
:

Alternatively, using the description of the multilattice in terms

of the shift vectors p̂p1; p̂p2, we have

Mð1Þp̂p1 ¼ p̂p1 � p̂p2; Mð1Þp̂p2 ¼ �p̂p2 � e1;

and

Mð2Þp̂p1 ¼ p̂p1; Mð2Þp̂p2 ¼ p̂p2 � e2;

which now involves the matrices

ÂA
ð1Þ
¼

1 0

�1 �1

� �
; ÂA

ð2Þ
¼

1 0

0 1

� �
:

It turns out that these matrices are conjugated to Að1Þ and Að2Þ

by the element of S3 associated with the permutation

� ¼ ð01Þð2Þ: the two descriptions lead to different, but

equivalent, forms of the master equation.

3. The master equation as a system of linear equations

The master equation is both a relation that uniquely char-

acterizes the lattice group K of a multilattice, given the shift

vectors ðp�Þ, and an equation in the unknowns ðp�Þ, that allows

all the multilattices with a given lattice group K to be deter-

mined. In this section we take the latter point of view, and

assume that K, or rather H, is given. Specifically, the problem

we want to solve is:

(i) fix a simple lattice LðQ0; feigi¼1;...;nÞ with point group P

and lattice group G;

(ii) choose the number N of (unknown) additional points

ðQ1; . . . ;QNÞ in the unit cell of the skeletal lattice;

(iii) fix a subgroup H � G;

(iv) choose a permutation representation H! SNþ1 that

associates to each generator MðkÞ 2 H, with k ¼ 1; . . . ;K, a

permutation of the points ðQ0; . . . ;QNÞ, and determine the

resulting linear representation H! SNþ1 in terms of the

matrices AðkÞ, recalling that the permutation representations of

a finite group can be decomposed in terms of its action on the

coset spaces by its maximal subgroups (Aschbacher, 2000);

(v) compute the shifts: solve the master equation (11) in

the unknowns P for every MðkÞ 2 H and corresponding

AðkÞ 2 SNþ1, and for every possible TðkÞ;

(vi) compare the solutions for different choices of TðkÞ, and

establish which are arithmetically equivalent;

(vii) decide whether the structures determined in the

preceding steps are genuine ðN þ 1Þ-lattices or non-essential

descriptions of an ðN0 þ 1Þ-lattice, with N0<N, using the

criterion in Proposition 1.

3.1. The solution procedure

The system of master equations (11), corresponding to the

K generators of the lattice group K, can be written in compact

form as a linear system,

LePP ¼ eTT; ð12Þ

where the vectors ePP 2 RnN, eTT 2 ZnNK have components

obtained by ordering lexicographically the columns of P and

TðkÞ, and L is an integral matrix inMðnNK � nN;ZÞ, whose

explicit form in terms of the generators of K is given in

Appendix A2.

Consider first a diagonal system of linear equations with

integral coefficients

DX ¼ S; ð13Þ

with D 2 Mðl �m;ZÞ (l � m) and DJ
i ¼ 0 for J 6¼ i, X 2 Rm

and S 2 Zl, i.e.
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(
Di

iX
i ¼ Si for i � r

0 ¼ Si for i> r

with1 r = rank D and Di
i are integers. The set X of the m-tuples

of the form

X :¼

(�
k1

D1
1

;
k2

D2
2

; . . . ;
kr

Dr
r

; trþ1; trþ2; . . . ; tm

�)
; ð14Þ

where ki 2 f0; 1; 2; . . . ;Di
i � 1g are integers and tj are real

numbers in ½0; 1Þ, parametrizes all solutions of equation (13).

Proposition 3. The solutions X of equation (13) have the form

X ¼ K þ Y , with Y 2 X and K 2 Zm, and, conversely, all

vectors of this form are solutions.

Actually, in order to find a set of representatives of the

solutions in X , it is enough to solve equation (13) for S in the

set

fðS1; . . . ; Sl
Þ 2 Z

l : 0 � Si <Di
i for i ¼ 1; . . . ; r;

Si
¼ 0 for i ¼ rþ 1; . . . ; lg:

Consider now the full system of linear equations (12): instead

of solving it for a fixed value of the right-hand side, we look for

solutions for some integral vectoreTT, and rewrite equation (12)

in the form

LePP ¼ 0 modZnNK: ð15Þ

Recall that L is a matrix with integral entries: it is a classical

result that every such matrix can be reduced to a diagonal

canonical form, the Smith canonical form (Newman, 1972;

Gohberg et al., 1982). Precisely, for every matrix L 2

MðnNK � nN;ZÞ there exist matrices U 2 GLðnNK;ZÞ and

V 2 GLðnN;ZÞ such that

L ¼ UDV; D 2 MðnNK � nN;ZÞ; ð16Þ

with DI
a ¼ 0 for I 6¼ a, and Di

i divides Diþ1
iþ1 if Diþ1

iþ1 6¼ 0. The

Smith canonical form D is unique, whereas the matrices U and

V are not.

Notice that if ePP is a solution of equation (15) so also isePPþ eWW, with eWW an arbitrary integral vector. Hence, we may

restrict to solutions in ½0; 1ÞnN and introduce the set

Y ¼ fePP 2 ½0; 1ÞnN : ePP ¼ V�1X � ½V�1X� for X 2 Xg; ð17Þ

where X is defined as in (14) with m ¼ nN, V is defined in (16)

and, for W 2 RnN , ½W� 2 ZnN is the vector whose components

are the integer parts of the components of W. In other words,

Y is the inverse image ofX by V, translated into the unit cell of

the skeletal lattice. Notice that since X is a set of solutions of

(13), then trivially Y is a set of solutions of (15). It can be

proved that the definition of Y is independent of the choice of

the diagonalizing matrices U;V.

The following results characterize completely the solution

set of the master equation (15).

Proposition 4. Let L 2 MðnNK � nN;ZÞ, and D its Smith

normal form, with r ¼ rankðDÞ: then all solutions of equation

(15) belong to YmodZnN. More precisely, the system (15)

admits (D1
1D2

2 . . . Dr
r) solutions modulo ZnN, each depending

on nN � r real parameters, and these are given by

ePP ¼ V�1X � V�1X
� �

; X ¼
k1

D1
1

;
k2

D2
2

; . . . ;
kr

Dr
r

; t1; . . . ; tnN�r

� �
;

with V such that L ¼ UDV [with U 2 GLðnNK;ZÞ and

V 2 GLðnN;ZÞ] and

ki 2 f0; 1; . . . ;Di
i � 1g; tj 2 ½0; 1Þ:

By construction, the matrix L only depends on the groupH

and its permutation representationH! SNþ1. Every solutionePP of the master equation (15) defines a (possibly non-

essential) ðN þ 1Þ-lattice with lattice group K, as defined

in equation (10), where the translation matrix eTT is computed

from eTT :¼ LePP.

The question arises naturally as to whether two solutions

of the same master equation correspond to arithmetically

equivalent multilattices. We shall discuss this topic in the

following section.

4. Arithmetic equivalence

The main result in this section shows that two equivalent

multilattices have the same Smith normal form, and provides a

criterion to establish when two multilattices are equivalent.

Consider two equivalent ðN þ 1Þ-lattices. By definition,

their lattice groups K and K0 are conjugated by some

Q ¼
H R

0 B

� �
2 �n;N: ð18Þ

In particular, the associated subgroupsH andH0 of the lattice

group of the skeletal lattice, as well as their permutation

representations in SNþ1, are conjugated by H and B, respec-

tively. To simplify, we choose the generators

GðkÞ ¼
MðkÞ TðkÞ

0 AðkÞ

� �
; G0ðkÞ ¼

M0ðkÞ T 0ðkÞ

0 A0ðkÞ

� �
;

k ¼ 1; . . . ;K;

of K and K0 to be pairwise conjugate, which implies in turn

that

M0ðkÞ ¼ H�1MðkÞH and A0ðkÞ ¼ B�1AðkÞB ð19Þ

for every k ¼ 1; . . . ;K.

We write the master equations corresponding to each

multilattice as in equation (12),

LePP ¼ eTT; L0ePP0 ¼ eTT 0; ð20Þ

with Smith canonical form

DX ¼ S; D0X 0 ¼ S0: ð21Þ

Finally, for a given square matrix W 2 MðnN � nN;ZÞ, we

denote by WK 2 MðnNK � nNK;ZÞ the square matrix of the

form
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WK ¼

W 0 . . . 0

0 W . . . 0

0 . . . . . . 0

0 0 . . . W

0BB@
1CCA
9>>=>>;K times:

Proposition 5. For two equivalent ðN þ 1Þ-lattices, L and L0

satisfy the relation

L0 ¼ W�1
K LW;

where W 2 GLðnN;ZÞ is the integral matrix associated with

the conjugating matrices H and B in (19) through the relation

(36) in Appendix A. As a consequence, the matrices L and L0

in equation (20) have the same Smith normal form

D0 ¼ D: ð22Þ

Further, the vectors S; S0 2 ZnNK in equation (21) are related

through

S0 ¼ U0�1W�1
K USþD0Z; ð23Þ

with U;U0 2 GLðnNK;ZÞ are such that L ¼ UDV and

L0 ¼ U0D0V 0, and Z 2 ZnN is a vector of integers.

Conversely, given two non-necessarily equivalent ðN þ 1Þ-

lattices, assume that the groups H and H0 defined in Propo-

sition 2, as well as their permutation representations in SNþ1,

are conjugated, i.e. there exists H 2 GLðn;ZÞ and B 2 SNþ1

such that equation (19) holds for some set of generators, and

therefore (22) holds. If there exists an integral vector Z 2 ZnN

such that (23) holds, then the two multilattices are equivalent.

Notice that, as we will see below, there exist multilattices for

which (23) is not true, that have the same associated Smith

normal form but are not equivalent.

The above result allows one, among other things, to classify

the inequivalent solutions of the master equation, as shown

by the following corollary. Consider to this purpose a

group H � GLðn;ZÞ with generators fMð1Þ; . . . ;MðKÞg,

and a permutation representation H! SNþ1, and write

fAð1Þ; . . . ;AðKÞg for the images of the generators ofH. Let L be

the integral nNK � nN matrix associated with these genera-

tors, and let D ¼ U�1LV�1 be its Smith normal form.

Corollary 1. Under the above hypotheses, consider two solu-

tions X and X 0 of the master equation in diagonal form

DX ¼ 0 modZnN , and let S ¼ DX , S0 ¼ DX 0. Then the

corresponding multilattices are arithmetically equivalent if

and only if there exists an integral vector Z 2 ZnNK such that

S0 ¼ U�1W�1
K USþDZ;

where WK 2 GLðnNK;ZÞ is the integral matrix associated

with the conjugating matrices H and B through the relation

(36), with H 2 GLðn;ZÞ;B 2 SNþ1 elements of the centrali-

zers of H and its permutation representation, respectively, i.e.

H�1MðiÞH ¼ MðiÞ; B�1AðiÞB ¼ AðiÞ;

for every i ¼ 1; . . . K.

The above criterion for arithmetic equivalence could also

be formulated in terms of the integral matrices T and T 0, but

we find it easier to use it in this form, as the subsequent

examples show.

5. Applications: construction of all inequivalent
multilattices with a given point group

The procedure discussed in the previous sections can help to

solve a classical problem of the arithmetic classification of

multilattices, namely how to generate all arithmetic equiva-

lence classes of ðN þ 1Þ-lattices with a given point group.

Notice that the algorithm in x3 involves the lattice group of the

skeletal lattice, instead of its point group: this is necessarily so

since two skeletal lattices with the same point group could be

arithmetically inequivalent, and have therefore lattice groups

that are not conjugated in GLðn;ZÞ, as is the case for the three

cubic lattices in three-dimensions (primitive, face centered

and body centered).

5.1. First example: 2-lattices with hexagonal point group in
three dimensions

We show how to obtain all inequivalent 2-lattices with

hexagonal point group 6=mmm and space groups P63=mmc

and P6=mmm (Nos. 194 and 191 in International Tables for

Crystallography Volume A). These structures are listed as 6, 27

and 28 in Fadda & Zanzotto (2001b).

In this case n ¼ 3, N ¼ 1 and K ¼ 3. The hexagonal Bravais

lattice has the point group P ¼ 6=mmm: there is only a single

arithmetic class in this case, and the corresponding lattice

group G is the matrix representation of the point group in the

lattice basis. Using the conventional choices for the lattice

basis given in International Tables for Crystallography Volume

A (Hahn, 2005), we choose as generators of G the integral

matrices (Fadda & Zanzotto, 2001b)

Mð1Þ ¼

�1 1 0

�1 0 0

0 0 �1

0@ 1A; Mð2Þ ¼

�1 1 0

0 1 0

0 0 1

0@ 1A;
together with the inversion, denoted here as Mð3Þ. In this case,

all possible representations of 6=mmm as a permutation group

on 2 elements result by associating to each generator MðiÞ

either the identity permutation or the transposition, corre-

sponding to AðiÞ ¼ 1 or AðiÞ ¼ �1, respectively.

We describe below only the two cases that yield non-trivial

results.

(i) Að1Þ ¼ Að2Þ ¼ �Að3Þ ¼ 1: the master equation is

Mð1ÞP ¼ Pþ Tð1Þ; Mð2ÞP ¼ Pþ Tð2Þ; Mð3ÞP ¼ �Pþ Tð3Þ;

and since Mð3Þ is the inversion, the third equation is identically

satisfied and can be neglected. The matrix L corresponding to

the first two equations, and its Smith normal form are

L ¼

�2 1 0

�1 �1 0

0 0 �2

�2 1 0

0 0 0

0 0 0

0BBBBBB@

1CCCCCCA; D ¼

1 0 0

0 1 0

0 0 6

0 0 0

0 0 0

0 0 0

0BBBBBB@

1CCCCCCA;
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with

V ¼

1 1 0

0 3 �2

0 �1 1

0@ 1A; U ¼

�2 3 1 0 0 0

�1 0 0 0 0 0

0 �2 �1 0 0 0

�2 3 1 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0BBBBBB@

1CCCCCCA:

The diagonal system DX ¼ 0 modZ6 has five nontrivial

distinct solutions

Xi ¼ ð0; 0; i=6Þ; i ¼ 1; . . . ; 5;

and the corresponding shift vectors (components in the

hexagonal basis) are

p1
¼ ð2=3; 1=3; 1=2Þ; p2

¼ ð1=3; 2=3; 0Þ; p3
¼ ð0; 0; 1=2Þ;

p4 ¼ ð2=3; 1=3; 0Þ; p5 ¼ ð1=3; 2=3; 1=2Þ:

The translation vectors Si are

Si ¼ ð0; 0; i; 0; 0; 0Þ; i ¼ 1; . . . ; 5:

To establish which of these solutions are mutually equivalent,

we can now apply Corollary 1. The integral centralizers

H 2 GLð3;ZÞ of the lattice group are defined by

Mð1ÞH ¼ HMð1Þ; Mð2ÞH ¼ HMð2Þ;

and those of its permreps are the integers B such that

BAð1ÞB ¼ Að1Þ and BAð2ÞB ¼ Að2Þ, i.e. B ¼ 	1. A direct

calculation shows that H must have the form

H ¼ 	

1 0 0

0 1 0

0 0 �1

0@ 1A; 	 1 0 0

0 1 0

0 0 1

0@ 1A:
Now, S1 and S5 satisfy equation (23), i.e.

S1 ¼ U�1eWW�1
K US5 þDZ;

with B ¼ �1 and H ¼ I3 the identity in R3, which implies thateWWK ¼ �I6 is the inversion in R6. In fact, for this choice (23)

reduces to

0

0

1

0

0

0

0BBBBBB@

1CCCCCCA ¼ �
0

0

5

0

0

0

0BBBBBB@

1CCCCCCAþ
1 0 0

0 1 0

0 0 6

0 0 0

0 0 0

0 0 0

0BBBBBB@

1CCCCCCA
m1

m2

m3

m4

m5

m6

0BBBBBB@

1CCCCCCA
with mi integers, which is satisfied by Z ¼ ð0; 0; 1; 0; 0; 0Þ.

The same argument shows that

S2 ¼ U�1eWW�1
K US4 þDZ;

with the same H, B and Z as before. It is possible to check that

equation (23) cannot hold for other choices of the centralizers.

Hence we conclude that the 2-lattices with shifts p1 and p5 are

arithmetically equivalent, as are those with shifts p2 and p4.

However, p1 and p2 are not equivalent.

Finally, we notice that the structure corresponding to the

shift p3 is not a 2-lattice, but a non-essential description of the

hexagonal Bravais lattice with half-vertical lattice parameter.

This follows from Parry’s criterion Proposition 1 applied to

2-lattices.

(ii) �Að1Þ ¼ Að2Þ ¼ �Að3Þ ¼ 1: the master equation is

Mð1ÞP ¼ �Pþ Tð1Þ; Mð2ÞP ¼ Pþ Tð2Þ; Mð3ÞP ¼ �Pþ Tð3Þ;

and, as before, the third equation is identically satisfied and

can be neglected. The matrix L corresponding to the first two

equations, and its Smith normal form are (V ¼ I3 and U are

omitted here)

L ¼

0 1 0

�1 1 0

0 0 0

�2 1 0

0 0 0

0 0 0

0BBBBBB@

1CCCCCCA; D ¼

1 0 0

0 1 0

0 0 0

0 0 0

0 0 0

0 0 0

0BBBBBB@

1CCCCCCA:

The diagonal system DX ¼ 0 modZ6 has infinite nontrivial

solutions

X ¼ ð0; 0; tÞ; t 2 ½0; 1Þ;

and the corresponding shift vectors in the hexagonal basis are

p6
¼ ð0; 0; tÞ; t 2 ½0; 1Þ:

The 2-lattice corresponding to this shift vector is not arith-

metically equivalent to those determined previously, because

the permutation representations of the hexagonal point group

are not equivalent. We conclude that the 2-lattices with shift

vectors (components in the hexagonal basis)

p1
¼ ð2=3; 1=3; 1=2Þ; p4

¼ ð2=3; 1=3; 0Þ;

p6 ¼ ð0; 0; tÞ; t 2 ½0; 1Þ;

i.e. the structures 26, 27 and 28 in Fadda & Zanzotto (2001b),

are the only inequivalent monoatomic 2-lattices with hexa-

gonal skeletal lattice and point group the holohedry 6=mmm.

These 2-lattices can also be found by placing points at

equivalent Wyckoff positions of multiplicity 2 of the corre-

sponding space groups. Consider first P6=mmm: it has three

Wyckoff positions with multiplicity 2:

2c ¼ fQ0 ¼ ð2=3; 1=3; 0Þ; Q1 ¼ ð1=3; 2=3; 0Þg;

2d ¼ fQ0 ¼ ð2=3; 1=3; 1=2Þ; Q1 ¼ ð1=3; 2=3; 1=2Þg;

2e ¼ fQ0 ¼ ð0; 0;�tÞ; Q1 ¼ ð0; 0; tÞg:

Letting p ¼ Q1 �Q0 modulo lattice translations, the corre-

sponding shift vectors are

2c; 2d : p4
¼ ð2=3; 1=3; 0Þ; 2e : p6

¼ ð0; 0; tÞ:

Notice that the Wyckoff positions 2c and 2d yield the same

2-lattice: this is because they are equivalent under the affine

normalizer of P6=mmm, whose only non-trivial coset repre-

sentative is a translation.

Consider now P63=mmc: it has four Wyckoff positions with

multiplicity 2:
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2a ¼ fQ0 ¼ ð0; 0; 0Þ;Q1 ¼ ð0; 0; 1=2Þg;

2b ¼ fQ0 ¼ ð0; 0; 1=4Þ;Q1 ¼ ð0; 0; 3=4Þg;

2c ¼ fQ0 ¼ ð2=3; 1=3; 3=4Þ;Q1 ¼ ð1=3; 2=3; 1=4Þg;

2d ¼ fQ0 ¼ ð2=3; 1=3; 1=4Þ;Q1 ¼ ð1=3; 2=3; 3=4Þg:

The corresponding shift vectors are, with the same conven-

tions as above

2a; 2b : p3
¼ ð0; 0; 1=2Þ; 2c; 2d : p1

¼ ð1=3; 2=3; 1=2Þ;

which are exactly the same solutions found by our algorithm.

5.2. Second example: 3-lattices with cubic point group in
three dimensions

We discuss here an application to 3-lattices, showing how to

obtain the structures with three identical atoms per unit cell

and cubic symmetry listed by Hosoya (1987), p. 16, corre-

sponding to the space groups Pm3m, Fm3m and Im3m (Nos.

221, 225 and 229, respectively, in International Tables for

Crystallography Volume A). According to the classification of

Hosoya, such structures belong to genus A3 (three identical

atoms per unit cell).

The work can be organized following the steps listed in x3,

with n ¼ 3 and N ¼ 2: fix one of the three cubic lattices in R3,

consider its lattice group, which is conjugate to the cubic point

group Oh, determine all its permutation representations, write

the master equation and solve it with the techniques described

in the paper.

As a first step we compute all permutation representations

of Oh, recalling that they can be determined in terms of its

actions on the coset spaces Oh=H, with H a maximal subgroup

(Aschbacher, 2000).

Since we are interested in permutation representations on

sets of three objects, we only need to consider subgroups of Oh

of index less or equal to three, namely D4h (index 3), Td (index

2), Th (index 2) and O (index 2).

We use here a presentation of Oh in terms of five generators

(K ¼ 5):

Mð1Þ ¼

�1 0 0

0 �1 0

0 0 1

0@ 1A; Mð2Þ ¼

�1 0 0

0 1 0

0 0 �1

0@ 1A;
Mð3Þ ¼

0 0 1

1 0 0

0 1 0

0@ 1A; Mð4Þ ¼

0 1 0

1 0 0

0 0 �1

0@ 1A;
Mð5Þ ¼

�1 0 0

0 �1 0

0 0 �1

0@ 1A:
The permutation representations corresponding to the

maximal subgroups of Oh are

(a) D4h (index 3): the permutations corresponding to Mð1Þ,

Mð2Þ, Mð3Þ, Mð4Þ, Mð5Þ are �1 ¼ �2 ¼ �5 ¼ ð1Þð2Þð3Þ, �3 ¼ ð123Þ,

�4 ¼ ð1Þð23Þ, with two-dimensional linear representations

Að1Þ ¼ Að2Þ ¼ Að5Þ ¼
1 0

0 1

� �
; Að3Þ ¼

�1 �1

1 0

� �
;

Að4Þ ¼
0 1

1 0

� �
:

(b) Th (index 2): the permutations on two objects corre-

sponding to Mð1Þ, Mð2Þ, Mð3Þ, Mð4Þ, Mð5Þ are �1 ¼ �2 ¼

�3 ¼ �5 ¼ ð1Þð2Þ, �4 ¼ ð12Þ, which can be extended to permu-

tations on three objects (modulo conjugation in S3) as

follows: �1 ¼ �2 ¼ �3 ¼ �5 ¼ ð1Þð2Þð3Þ, �4 ¼ ð1Þð23Þ, with

two-dimensional linear representations

Að1Þ ¼ Að2Þ ¼ Að3Þ ¼ Að5Þ ¼
1 0

0 1

� �
; Að4Þ ¼

0 1

1 0

� �
:

(c) Td (index 2): the permutations on two objects corre-

sponding to Mð1Þ, Mð2Þ, Mð3Þ, Mð4Þ, Mð5Þ are �1 ¼ �2 ¼

�3 ¼ ð1Þð2Þ, �4 ¼ �5 ¼ ð12Þ, which can be extended to permu-

tations on three objects (modulo conjugation in S3) as

follows: �1 ¼ �2 ¼ �3 ¼ ð1Þð2Þð3Þ, �4 ¼ �5 ¼ ð1Þð23Þ, with

two-dimensional linear representations

Að1Þ ¼ Að2Þ ¼ Að3Þ ¼
1 0

0 1

� �
; Að4Þ ¼ Að5Þ ¼

0 1

1 0

� �
:

(d) O (index 2): the permutations on two objects corre-

sponding to Mð1Þ, Mð2Þ, Mð3Þ, Mð4Þ, Mð5Þ are �1 ¼ �2 ¼

�3 ¼ �4 ¼ ð1Þð2Þ, �5 ¼ ð12Þ, which can be extended to permu-

tations on three objects (modulo conjugation in S3) as

follows: �1 ¼ �2 ¼ �3 ¼ �4 ¼ ð1Þð2Þð3Þ, �5 ¼ ð1Þð23Þ, with

two-dimensional linear representations

Að1Þ ¼ Að2Þ ¼ Að3Þ ¼ Að4Þ ¼
1 0

0 1

� �
; Að5Þ ¼

0 1

1 0

� �
:

We now turn to the actual solution procedure.

(i) Consider first the primitive cubic lattice. According to

the definition following (4), its lattice group is the matrix

representation of the point group in the lattice basis, in

this case the canonical basis. Its generators are therefore

the matrices Mð1Þ; . . . ;Mð5Þ above. Solving the master

equation for each of the four permreps we find only one

non-trivial solution corresponding to two shift vectors

[permrep (a)]:

p1 ¼ ð1=2; 1=2; 0Þ; p2 ¼ ð1=2; 0; 1=2Þ:

The corresponding 3-lattice is fZ3
g [ fp1 þ Z

3
g [ fp2 þ Z

3
g,

i.e.

fð0; 0; 0Þ þ Z3
g [ fð1=2; 1=2; 0Þ þ Z3

g [ fð1=2; 0; 1=2Þ þ Z3
g:

This coincides with the 3-lattice with space group Pm3m

given by Hosoya (1987). In that work the positions of the

three atoms in the conventional cubic unit cell are given

in terms of the Wyckoff positions of Pm3m with multiplicity

3, in this case 3c and 3d, which are equivalent under

the normalizer of Pm3m. Since the only non-trivial coset

representative of the normalizer is a translation, they corre-

spond to the same multilattice. The points are located at the
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center of the faces of the conventional cubic unit cell, all other

points of the structure being obtained by a translation of the

simple cubic lattice. Using an orthogonal coordinate system

such that the cubic lattice is Z3, this set of points has the

representation

fð0; 1=2; 1=2Þ þ Z3
g [ fð1=2; 0; 1=2Þ þ Z3

g [ fð1=2; 1=2; 0Þ þ Z3
g:

This structure coincides with the one found by our procedure

translated by the vector ð0; 1=2; 1=2Þ.

(ii) Consider now the face-centered cubic (FCC) lattice. The

generators of its lattice group are the integral matrices

B�1
FCCMð1ÞBFCC; . . . ;B�1

FCCMð5ÞBFCC, with

BFCC ¼

1=2 1=2 0

1=2 0 1=2

0 1=2 1=2

0@ 1A:
Solving the master equation for all possible permreps we find

only one nontrivial solution [permrep (c)] with shift vectors,

expressed in components in the standard cubic basis,

p1 ¼ ð1=4; 1=4; 1=4Þ; p2 ¼ ð3=4; 3=4; 3=4Þ;

and the corresponding 3-lattice has the form

fð0; 0; 0Þ þ LFCCg [ fð1=4; 1=4; 1=4Þ þ LFCCg

[ fð3=4; 3=4; 3=4Þ þ LFCCg;

with

LFCC ¼ fm
1ð1=2; 1=2; 0Þ þm2ð1=2; 0; 1=2Þ þm3ð0; 1=2; 1=2Þ;

ðm1;m2;m3
Þ 2 Z

3
g:

This result coincides with the 3-lattice with space group Fm3m

in Hosoya (1987). According to Hosoya, the atoms are located

at the Wyckoff positions 4a and 8c, i.e. using as before an

orthogonal coordinate system corresponding to the conven-

tional cubic unit cell, one atom at the origin of the conven-

tional unit cell (position 4a), and two atoms at ð1=4; 1=4; 1=4Þ

and ð1=4; 1=4; 3=4Þ (positions 8c), all other atoms being

obtained by translations of the FCC lattice. This structure has

the representation

fð0; 0; 0Þ þ LFCCg [ fð1=4; 1=4; 1=4Þ þ LFCCg

[ fð1=4; 1=4; 3=4Þ þ LFCCg;

and is the same as ours.

(iii) Consider finally the body-centered cubic (BCC) lattice.

The generators of its lattice group are the integral matrices

B�1
BCCMð1Þ BBCC; . . . ;B�1

BCCMð5ÞBBCC, with

BBCC ¼

1=2 �1=2 1=2

1=2 1=2 1=2

1=2 1=2 �1=2

0@ 1A:
Solving the master equation for all possible permreps we find

only one nontrivial solution [permrep (a)] with shifts,

expressed in components in the standard cubic basis,

p1 ¼ ð0; 1=2; 0Þ; p2 ¼ ð1=2; 0; 0Þ:

The resulting 3-lattice has the representation

fð0; 0; 0Þ þ LBCCg [ fð1=2; 0; 0Þ þ LBCCg [ fð0; 1=2; 0Þ þ LBCCg;

with

LBCC ¼ fm
1
ð1=2; 1=2; 1=2Þ þm2

ð�1=2; 1=2; 1=2Þ

þm3ð1=2; 1=2;�1=2Þ; ðm1;m2;m3Þ 2 Z
3
g:

This result coincides with the 3-lattice with space group Im3m

in Hosoya (1987). According to this work, the atoms are

located at the Wyckoff positions 6b, i.e. at the face centers of

the conventional unit cell, all other points being obtained by

translation of the BCC lattice. This structure has the repre-

sentation

fð1=2; 1=2; 0Þ þ LBCCg [ fð1=2; 0; 1=2Þ þ LBCCg

[ fð0; 1=2; 1=2Þ þ LBCCg:

To see that this and our structure are equivalent, it is enough

to apply the translation ð0; 0; 1=2Þ.

6. Conclusions

Monoatomic multilattices are periodic structures that

generalize simple lattices in any dimension. Their study

is important not only for materials science, but also

to provide a general description of those quasiperiodic

structures that can be obtained by projection of regular

sets of points from high- to low-dimensional spaces, via, for

instance, the well known cut-and-project scheme for quasi-

crystals.

A first fundamental problem is to establish whether two

multilattices are equivalent in some sense, as well as to

determine all multilattices that belong to a given equivalence

class. In this context, it has been proved that, in analogy to

simple lattices, arithmetic equivalence is strictly finer than

affine equivalence (Pitteri & Zanzotto, 1998). Hence, we focus

here on arithmetic equivalence.

We approach the problem via the so-called master

equation (1), that either characterizes all monoatomic multi-

lattices with a given symmetry or can be used to establish

the symmetry group of a given multilattice. By reducing

the master equation to a suitable normal form, i.e. the

Smith normal form, it is possible to enumerate all

solutions, and determine easily which of these solutions

are arithmetically equivalent using the criterion in

Proposition 1, which only involves the characterization of

the centralizer of a finite crystallographic group. Since

the centralizers of the crystallographic groups in any

dimension are finite or finitely generated, this procedure

yields an algorithm which, in principle, can be coded and

yields a solution to the arithmetic classification problem for

multilattices.

In order to elucidate the basic features of our method, we

discuss two examples from the literature, recovering in a few

steps some relevant cubic and hexagonal 2- and 3-lattices in

three dimensions.
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APPENDIX A
Proofs

A1. Proof of Proposition 2

By hypothesis, if M;H 2 H, there exist AM;AH 2 SNþ1 and

TM;TH integral matrices such that

MP ¼ PAM þ TM; HP ¼ PAH þ TH :

Hence

ðMHÞP ¼MðPAH þ THÞ ¼ ðPAM þ TMÞAH þMTH

¼PðAMAHÞ þ ðTMAH þMTHÞ:

Further, by multiplying MP ¼ PAM þ TM to the left by M�1

and to the right by A�1
M , we find

M�1P ¼ PA�1
M �M�1TMA�1

M :

Hence, since TMAH þMTH and M�1TMA�1
M are matrices of

integers, MH and M�1 satisfy the master equation, and H is a

group. Further, the mapping M 7!AM 2 SNþ1 is single-

valued. In fact, noting first that it is implicit in the hypothesis

that the shift vectors P provide an essential description of

the multilattice, assume that there exists A 6¼ IN such that

P ¼ PAþ T, i.e. In 7!A 6¼ IN , where In and IN are the

identity in GLðn;ZÞ and GLðN;ZÞ, respectively. Explicitly,

this means that

p�ð�Þ � p� ¼ p�ð0Þmod T ; � ¼ 1; . . . ;N;

with � the permutation corresponding to A, and this, by

Proposition 1, implies that the description is non-essential,

which is a contradiction. Hence, the map M 7!AM 2 SNþ1 is a

group morphism, and AMH ¼ AMAH . Finally, the above

argument shows that the map

M 7!
M TM

0 AM

� �
2 �n;N

is also a group morphism, so that K is also a group.

A2. The master equation as a linear system: x3.1

The master equation (8) for a fixed element

G ¼
M T

0 A

� �
2 K

can be rewritten as a conventional system of linear equations.

To do so, given � 2 f1; . . . ;Ng and i 2 f1; . . . ; ng, define

a ¼ iþ ð�� 1Þn; ð24Þ

so that a takes values in f1; . . . ; nNg. Conversely, let

a ¼ 1; . . . ; nN and define � and i through the identities

� ¼
a� 1

n

� 	
þ 1; i ¼ a� ð�� 1Þn; ð25Þ

where ½
� denotes the integer part of its argument. As a varies

in f1; . . . ; nNg, then � and i take values in f1; . . . ;Ng and

f1; . . . ; ng, respectively, and the relation between a and the

pair ð�; iÞ is bijective. Let

La
b :¼ ���Mi

j � �
i
jA

�
�;

i.e.

L ¼

M � A1
1In . . . . . . �AN

1 In

�A1
2In . . . . . . �A1

2In

. . . . . . . . . . . .
�A1

NIn . . . . . . M � AN
NIn

0BB@
1CCA
9>>=>>;Nn

with In the identity matrix in Rn, andePPb :¼ P
j
�; eTTa :¼ Ti

�; ð26Þ

where �, i are defined as in equation (25) and, for

b 2 f1; . . . ; nNg

� ¼
b� 1

n

� 	
þ 1; j ¼ b� ð�� 1Þn; ð27Þ

with ��� and �i
j Kronecker deltas. The nN-dimensional vector

ðePPbÞ has components that are obtained by ordering the vectors

p�.

In terms of the vectorsePP andeTT and the matrix L, the master

equation (8) takes the formPnN

b¼1

La
b
ePPb ¼ eTTa: ð28Þ

The above assertion follows from a simple argument: leteYYb :¼ Y
j
� and eZZb :¼ Z

�
j , with b ¼ 1; . . . ; nN, j ¼ 1; . . . ; n and

� ¼ 1; . . . ;N consistent with the indexing rule (27). ThenPnN

b¼1

eYYbeZZb ¼
eYY1eZZ1 þ . . .þeYYneZZn þ

eYY1þð2�1ÞneZZ1þð2�1Þn

þ . . .þeYYnþð2�1ÞneZZnþð2�1Þn þ . . .

þ eYY1þðN�1ÞneZZ1þðN�1Þn þ . . .þeYYnþðN�1ÞneZZnþðN�1Þn

¼Y1
1 Z1

1 þ . . .þ Yn
1 Z1

n þ Y1
2 Z2

1 þ . . .þ Yn
2 Z2

n þ . . .

þ Y1
NZN

1 þ . . .þ Yn
NZN

n

¼
PN
�¼1

Pn
j¼1

Y
j
�Z

�
j :

HencePn
j¼1

Mi
jP

j
� �

PN
�¼1

P i
�A�

� ¼
PN
�¼1

Pn
j¼1

ðMi
j�
�
� � �

i
jA

�
�ÞP

j
� ¼

PnN

b¼1

La
b
ePPb:

Consider now the system of master equations (11) for the full

set of generators of K, i.e.Pn
j¼1

M
ðkÞi
j P j

� �
PN
�¼1

P i
�AðkÞ�� ¼ TðkÞi� ; k ¼ 1; . . . ;K;

with K the number of generators of K. The associated system

of linear equations (28) is now replaced by a system of the

form PnN

b¼1

LJ
b
ePPb ¼ eTTJ; ð29Þ

with

LJ
b :¼ ���M

ðkÞi
j � �

i
jA
ðkÞ�
� ; ePPb ¼ P

j
�; eTTJ ¼ TðkÞi� ; ð30Þ

with J ¼ 1; . . . ; nNK given by
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J ¼ iþ ðk� 1ÞnN þ ð�� 1Þn; ð31Þ

with inverse

k ¼

�
J � 1

nN

	
þ 1;

� ¼

�
J � ðk� 1ÞnN � 1

n

	
þ 1;

i ¼ J � ðk� 1ÞnN � ð�� 1Þn;

8>>>>><>>>>>:
and the relations between b, � and j are as in equation (27).

A3. Proof of Proposition 3

Given S 2 Zr
� f0gl�r, then for all i ¼ 1; . . . ; r there exist

Ki 2 Z and Ci 2 f0; 1; . . . ;Di
i � 1g such that

Si
¼ Di

iKi þ Ci:

Then Di
iX

i ¼ Di
iKi þ Ci and, as a consequence, Xi ¼ Ki þ Yi

with Yi ¼ Ci=Di, for i ¼ 1; . . . ; r, and the statement is

proved.

A4. Proof of Proposition 4

The general procedure to solve equation (15) is as follows:

let

Xa ¼
PnN

b¼1

Va
b
ePPb;

so that, since ðUI
J Þ 2 GLðnNK;ZÞ, the system (15) can be

written in the formPnN

a¼1

DJ
aXa ¼ 0 modZnNK; ð32Þ

i.e.

D1
1X1 ¼ 0 modZ;

D2
2X2
¼ 0 modZ;

. . .

Dr
rX

r
¼ 0 modZ;

8>>><>>>: ð33Þ

where r ¼ rank ðDJ
aÞ. By Proposition 3, it is sufficient to solve

equation (33) in the set X : we obtain

X1
¼ 0;

1

D1
1

;
2

D1
1

; . . . ;
D1

1 � 1

D1
1

X2
¼ 0;

1

D2
2

;
2

D2
2

; . . . ;
D2

2 � 1

D2
2

. . .

Xr
¼ 0;

1

Dr
r

;
2

Dr
r

; . . . ;
Dr

r � 1

Dr
r

Xrþ1
¼ t1 2 ½0; 1Þ;

. . .

XnN
¼ tnN�r 2 ½0; 1Þ;

8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:
with ti real parameters.

Once the Xa and the corresponding ePPb are computed, the

right-hand sides of the master equation (29) are determined,

and ð30Þ2;3 yield the solution in terms of the ðPi
�Þ and ðTðkÞi� Þ.

A5. Tensor form of the master equation

The relation between the master equation and the matrix L

can be rewritten in more compact form as follows. For

M 2 GLðn;ZÞ and A 2 GLðN;ZÞ, consider the fourth-order

tensor

M � A>; ð34Þ

with components ðM � A>Þ
i�
j� ¼ Mi

jA
�
�, and where A> is the

transpose of the matrix A. The set of tensors of the form (34) is

a group with the product

ðM � A>Þ � ðH � B>Þ :¼ MH � A>B>; ð35Þ

and the indexing rules (24) and (25) define a morphism

between the group of such tensors and the group of invertible

nN � nN matrices.

Proposition 6. For i; j ¼ 1; . . . ; n, �; � ¼ 1; . . . ;N, let

a ¼ iþ ð�� 1Þn; b ¼ jþ ð�� 1Þn;

then the rule

Wa
b :¼ Mi

jA
�
� ð36Þ

defines a map M � A> 7!W between GLðn;RÞ �GLðN;RÞ,
with product �, and GLðnN;RÞ which is a group morphism.

Proof. Notice first that if M and A are invertible, then W is

invertible, with inverse W�1 associated with the tensor

M�1 � A�>, with A�> ¼ ðA�1Þ
>. Now let Ra

b :¼ Hi
j B

�
�: thenPnN

c¼1

Wa
c Rc

b ¼
Pn
h¼1

PN
�¼1

W
iþð��1Þn
hþð��1ÞnR

hþð��1Þn
jþð��1Þn ¼

Pn
h¼1

PN
�¼1

Mi
hA�

�Hh
j B�

�

¼ ðMHÞijðBAÞ�� ¼ ðMH � ðBAÞ>Þi�j�

¼ ½ðM � A>Þ � ðH � B>Þ�i�j�;

which proves the assertion. &

Further, the tensors of the form (34) act linearly on the

space of real matricesMðn� N;RÞ as follows:

ðM � A>Þ : P 7!MPA; P 2 Mðn� N;RÞ: ð37Þ

Letting ePP 2 RnN be given by equation (26), the above action

corresponds to the linear action of GLðnN;RÞ on RnN . In factPnN

b¼1

Wa
b
ePPb ¼

Pn
j¼1

PN
�¼1

W
iþð��1Þn
jþð��1Þn

ePP jþð��1Þn

¼
Pn
j¼1

PN
�¼1

Mi
jA

�
�P

j
� ¼ ðMPAÞi�:

The tensor form of the master equation (9) then follows in the

form

ðM � IN þ In � A>ÞP ¼ T;

with IN and In the N-dimensional and n-dimensional identity

matrices, respectively.

A6. Proof of Proposition 5

Consider two mutually conjugated generators of K and K0,
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GðkÞ ¼
MðkÞ TðkÞ

0 AðkÞ

� �
; G0ðkÞ ¼

M0ðkÞ T 0ðkÞ

0 A0ðkÞ

� �
;

by hypothesis

G0ðkÞ ¼ Q�1GðkÞQ; ð38Þ

with Q given by (18), so that, in particular, M0ðkÞ ¼ H�1MðkÞH

and A0ðkÞ ¼ B�1AðkÞB. LettingeLLðkÞ ¼MðkÞ � IN � In � ðA
ðkÞ
Þ
>;eLL0ðkÞ ¼M0ðkÞ � IN � In � ðA

0ðkÞÞ
>;eWW ¼H � B�>;

then eLL0ðkÞ ¼ eWW�1
� eLLðkÞ � eWW; k ¼ 1; . . . ;K: ð39Þ

In fact, by equation (35)

ðH�1
� B>Þ� ðMðkÞ � IN � In � ðA

ðkÞ
Þ
>
Þ � ðH � B�>Þ

¼H�1MðkÞH � B>INB�>

�H�1InH � B>ðAðkÞÞ
>

B�>

¼M0ðkÞ � IN � In � ðA
0ðkÞ
Þ
>:

The first assertion of the thesis then follows by letting W be

the matrix in GLðnN;ZÞ associated with eWW through the rule

(36), and using equation (39) and the definition (30) of L.

Further, for each k, equations (37) and (38) imply that

T 0ðkÞ ¼ H�1TðkÞBþ ðM0ðkÞ � IN � In � ðA
0ðkÞ
Þ
>
ÞH�1R;

which in turn means thateTT 0 ¼ W�1
K
eTT þ L0J;

with J 2 ZnN the integral vector associated with the matrix

H�1R through the relation ð30Þ2 [notice that H 2 GLðn;ZÞ
and R 2 Mðn� N;ZÞ]. Finally, we obtain equation (23) by

multiplying the above identity by U 0�1.

A7. Proof of Corollary 1

We first need an auxiliary result.

Proposition 7. Given two ðN þ 1Þ-lattices as above, assume

that H and H0, subgroups of the lattice group of the skeletal

lattices, as well as their permutation representations in SNþ1,

are conjugated, i.e. there exist H 2 GLðn;ZÞ and B 2 SNþ1

such that writing

GðkÞ ¼
MðkÞ TðkÞ

0 AðkÞ

� �
; G0ðkÞ ¼

M0ðkÞ T 0ðkÞ

0 A0ðkÞ

� �
;

for the generators of K and K0, respectively, then

M0ðkÞ ¼ H�1MðkÞH and A0ðkÞ ¼ B�1AðkÞB; ð40Þ

for each k ¼ 1; . . . ;K. If there exists an integral vector

Z 2 ZnN such that

S0 ¼ U0�1W�1
K USþD0Z; ð41Þ

with the same notations of Proposition 5, the two multilattices

are equivalent.

Proof. Clearly, (23) implies that there exists R 2 Mðn� N;ZÞ
such that eTT 0 ¼ W�1

K
eTT þ L0J;

with J 2 ZnN the integral vector associated with the matrix

H�1R through the relation ð30Þ2. This, together with equation

(19), implies in turn that

G0ðkÞ ¼ Q�1GðkÞQ

holds for each k, with Q given by equation (18). &

In order to prove Corollary 1, it is enough to apply

Proposition 7, with M0ðkÞ ¼ MðkÞ and A0ðkÞ ¼ AðkÞ. In this

case, the conjugants H and B are just operations that fix

ðMð1Þ; . . . ;MðKÞÞ and ðAð1Þ; . . . ;AðKÞÞ, respectively, i.e.,

elements of the centralizers.
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